Photosynthesis: Reliable (!) experiments to try

Paul Beaumont, Kate Andrews, Kath Crawford & Trisha Geraghty

(Paul.Beaumont@sserc.org.uk)

Aims

- Offer hands-on experience of plant-based practical work to support CfE
- Consider experimental work which might support National 4 & 5
- Explore experimental work to show plant respiration
- Explore the effect of temperature on rates of respiration

Curriculum for Excellence: Sciences Experiences and Outcomes

I have collaborated on investigations into the process of photosynthesis and I can demonstrate my understanding of why plants are vital to sustaining life on Earth [SCN 3-02A]

curriculum for excellence: sciences experiences and outcomes

Scotland Scotlish education SQA

Curriculum for Excellence: Sciences Experiences and Outcomes

curriculum for excellence: sciences experiences and outcomes

www.curriculumforexcellencescotland.gov

Through exploring the carbon cycle, I can describe the processes involved in maintaining the balance of gases in the air, considering causes and implications of changes in the balance [SCN 4-05b]

I can contribute to the design of an investigation to show the effects of different factors on the rate of aerobic respiration and explain my findings. [SCN 4-02b]

CfE-National 4 & 5

Overview of qualifications in the sciences curriculum area	
July 2010	
The Information in this document covers the broad subject areas of Biology, Chemistry, Physics, Environmental Science, and Science.	
This edition: July 2010, draft version 1.0	
Published by the Scotlash Qualifications Authority The Optima Building, 58 Robertson Street, Glasgow G2 8DQ Ironmilis Road, Daiketh, Mildiothian EH22 1LE	

www.sqa.org.uk

The information in this publication may be reproduced in support of SQA qualifications. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, then written permission must be obtained from the Editorial iteam at SQA. It must not be reproduced for trade or commercial purposes.

© Scottish Qualifications Authority 2010

CELL BIOLOGY (Nat 4)

- Elodea / Cabomba experiments
- Immobilised algae and bicarbonate indicator to show carbon dioxide/light usage

CELL BIOLOGY (Nat 5)

- Immobilised algae
- Elodea / Cabomba experiments
- (Limiting factors above can <u>be used)</u>
- Experiments to investigate respiration.

Photosynthesis

Debbie Eldridge

School Sci. Rev. (2004), **85**, 37-45.

Algae suspended in + calcium chloride sodium alginate solution

calcium alginate (insoluble)

- Hydrogencarbonate indicator
 - Used to measure [CO₂]
 - Orange/red in air
 - Increasingly yellow as [CO₂] increases
 - Orange → red → magenta → deep purple as
 [CO₂] decreases

Hydrogencarbonate indicator

pH 6.8

(in 0.4 increments)

Dark control

60-90 min irradiation

CO₂ loss as a function of time as measured by absorbance

Direction of Beam

R = ReferenceT = Test

1. Set filter to 580 nm

- 2. HC indicator (pH 7.6) as blank
- 3. Zero colorimeter (R!)
- 4. Measure and record absorbance of sample (T!)

Algal Tube

Tricia Geraghty

- 1. Black card cut to about 16 cm.
- 2. Coloured filter cut to about 16 cm.
- 3. Stopper one end.
- *4. Mix algae and HCI in beaker ca 50 cm³ in total.*
- 5. Add to tube.
- 6. Cylinders at either end.
- 7. Mix and place under lamps.

What will you observe?

Scenedesmus quadricauda

Algae suspended in + calcium chloride sodium alginate solution

calcium alginate (insoluble)

Light Sources

Available from Focus DIY (4' and 5')

2

What might you observe?

Dark control

60-90 min irradiation

Variables?

Colour of light Light Intensity Distance from lamp Neutral density experiment Number of balls Ball size Concentration of algae Temperature

SSERC

Colour of light

'Red Filter"

Lamp

SSFRC

Hydrogencarbonate indicator containing algal balls

SSERC

Light Intensity I

Light Intensity II

Neutral density filter

Filters

LEE Filters – range of filters Neutral density options LEE Filters, Central Way, Walworth Industrial Estate, Andover, Hants SP10 5AN. Tel 01264 366245; <u>www.leefilters.com</u>

Transmission data

Filter N ^o	%T
298	71
209	50
210	25
211	12.5
299	6.25

Rodger McAndrew

Investigating the compensation point of algae - (A new use for old balls!)

SSERC Bulletin 225 (Summer 2008)

Background

After one hour neutral density filters

Advancing science, technology and safety

SSERC

Dark control

60-90 min irradiation

Direction of Beam

R = ReferenceT = Test

1. Set filter to 580 nm

- 2. HC indicator (pH 7.6) as blank
- 3. Zero colorimeter (R!)
- 4. Measure and record absorbance of sample (T!)

Percentage light transmission

Advancing science, technology and safety

SFRC

and safety